1.023world - ヤドカリパークとマリンアクアリウム -

海洋の仕組みと細菌・微生物から学ぶマリンアクアリウムサイト

1.023world Facebook

結果 Oh! Life (旧ブログ)

懲りずに書いてみたりする結果オーライな日記

雑学4.褐虫藻のメカニズムと種類

この記事を含むタグの全記事リスト: 海洋雑学

過去の関連記事はこちら。

  1. 雑学3.サンゴの白化のメカニズム
  2. 雑学1.サンゴと共生藻

サンゴのストレスと白化

前回の雑学3.サンゴの白化のメカニズムを改めて簡単にまとめると以下のようになります。

平常時の環境下 光合成効率OK、炭素固定能OK
高水温+光なし 光合成効率OK、炭素固定能低下
高水温+光あり 活性酸素上昇→光合成回路損傷
高水温+強光下 白化まっしぐら(汗)

白化フローとしては、まず高水温により褐虫藻の炭素固定能が阻害され、続いて光合成の余剰エネルギーが活性酸素を生成し、それが光合成色素の損傷やサンゴへのダメージへと繋がり、以降悪循環となって白化に至ります。

サンゴの白化耐性は共生している褐虫藻の白化感受性により決定づけられるため、サンゴは褐虫藻の選定または複数の褐虫藻と共生することで環境に適応していると思われます。そしてこの順応性が高く、また白化に強い褐虫藻と共生しているサンゴほど、白化耐性は強くなると言えます。

詳しくは雑学3.サンゴの白化のメカニズムを参考に。

褐虫藻の種類

まず、サンゴの褐虫藻は、プラヌラ幼生期に水平感染として体内に取り込まれます(遺伝ではない)。そして成長と並行して、環境に応じた褐虫藻の選定と取得が必然的に行われているようです。

褐虫藻は形態の違いにより10種程度に分類が進み、また現在では18SrDNA解析によりA~Hのクレードに分けられています。

以下、最近読んだ書籍やネットでかき集めたデータを元に、褐虫藻の種とクレードのリストを作成してみました。但し、なるべく種名(学名)が判明しているものに限定し、種名無しのサブクレードはデータが膨大になるので省略しています。

尚、文献の時期により情報が交錯しているため、なるべく新しい情報を優先して編集しましたが、なんせ無学による適当なリストなので予めご容赦下さい。誤りがあったら訂正しますのでお知らせいただけると助かりますです。

クレード 褐虫藻の種類 検出元
A A1 Symbiodinium microadriaticum subsp. microadriaticum クラゲ、サンゴ
A1.1 Symbiodinium microadriaticum subsp. condylactis (=Symbiodinium cariborum ?) クラゲ
A2 Symbiodinium corculorum シャコ貝
Symbiodinium meandrinae サンゴ
Symbiodinium pilosum サンゴ
A4 Symbiodinium (=Gymnodinium) linucheae クラゲ
? Symbiodinium natans 新種(2009)
B B1 Symbiodinium bermudense イソギンチャク
Symbiodinium pulchrorum イソギンチャク
B4 Symbiodinium muscatinei イソギンチャク
C C1 Symbiodinium goreaui サンゴ
D サンゴ
E E1 Symbiodinium californium Bに再分類?
E? Gymnodinium varians
F F5 Symbiodinium kawagutii
G サンゴ、イソギンチャク
H

現在、私的に注目(笑)している対紫外線色素 MAAs については、クレードAの褐虫藻が有しているそうで、このことから恐らく浅場の多くのサンゴがこのクレードAの褐虫藻を持つと思われます。一方、少し深場のサンゴではクレードAの必要性は緩和されるため、多様なクレードを広く有している可能性がありそうです。もちろん、クレードAを持たないサンゴに過度のUVを照射することは危険でしょうね(汗)

ちなみに、褐虫藻以外の共生藻としては、イソギンチャク等から緑藻ズークロレラと言う光合成藻が、ハナヤサイサンゴからヘテロカプサ属の渦鞭毛藻、ヒラムシからアンフィディニウム属の渦鞭毛藻が見つかっています。

サンゴと褐虫藻の共生は、サンゴによる嗜好性は見られるものの、必ずしも特定の褐虫藻に限定を受けず、環境によって別の褐虫藻や複数の褐虫藻を臨機応変に取り込んでいるようです。

参考文献

こちらのエントリーもどうぞ♪

雑学3.サンゴの白化のメカニズム

この記事を含むタグの全記事リスト: 海洋雑学

(将来のコンテンツのための雑学メモ 3.)

前回までの雑学

サンゴの白化現象

光合成をするサンゴの体内には、渇虫藻と言う渦鞭毛藻の仲間が共生しています。
サンゴはその共生藻からの栄養を使って炭酸カルシウムを形成し、成長していきます。
この代謝は両者に最適な環境下でおこなわれ、光が強すぎたり水温が高くなると、活動が抑制されます。
環境が改善されない場合、共生藻が光合成色素を失ったり、あるいはサンゴから排出されることによって、共肉が透き通り、白い骨格が浮き彫りとなるため、俗に言うサンゴの白化現象となります。
白化したサンゴは、渇虫藻からの栄養が得られなくなるため、そのまま回復できなければ斃死が待っています。

白化のメカニズム

サンゴの白化現象は、サンゴ本体と渇虫藻のそれぞれの代謝と連携して起こります。
白化のきっかけは、高水温によるストレスを受けることから始まります。
種によって温度の耐性は様々ですが、全般的にサンゴ本体より渇虫藻の方が高水温には弱いようです。

まず、渇虫藻は高水温により光耐性が低くなり、通常の光環境ですら光阻害が起こり始めるため、光合成回路に支障をきたすようになります。
またサンゴ本体は高水温により、炭素固定回路(石灰化)が機能低下に陥ります。
この条件で光合成を開始すると、炭素固定回路で消費するはずだったエネルギーが行き場を失い、酸素と結びついて活性酸素を発生させ、より渇虫藻の損傷や破壊を招く悪循環となります。

渇虫藻の損傷が著しいと、細胞が破壊されたり、光合成色素を失って透明になったり、さまざまな変性が渇虫藻に見られるようになります。
勿論、症状が進行するほど、光合成能は低下し、最終的には機能を失います。

この時サンゴは機能維持のため、初期の段階では、損傷を受けた渇虫藻を優先的に体外へ排出しますが、環境が改善されず被害が著しくなる頃には、サンゴ自体も制御に支障をきたし、渇虫藻の損傷の有無に関わらず、渇虫藻の排出に暴走傾向が見られるようになります。
ここまで来ると、比較的早期にサンゴは白化してしまうようです。

サンゴが何をきっかけに渇虫藻をコントロールするのかハッキリとは解明されていませんが、主に活性酸素の発生渇虫藻からの栄養供給の低下などが考えられます。

また、種によっては白化から回復する能力に長けたものも見られ、如何にすばやく炭素固定回路を復旧させ、活性酸素の発生を抑制できるかが鍵となっているようです。

ちなみに、白化したサンゴに直接バイオマスを与え、渇虫藻の生産物の代替えが可能かどうかを調査した報告もあります。

一方で、先日のサンゴ白化に新データ 褐虫藻「排出」ほぼなしと言う記事もあります。
但しこの記事はとても判りづらく、調査結果を正確に評価できないため、研究機関からの発表を基に慎重に判断する必要がありそうです。

参考:沖縄科学技術振興センターサンゴの研究の各研究報告書

現在までに各機関から報告された調査結果等を基に、僕の浅知恵で解釈した白化のメカニズムです。なるべく専門用語を避け、判りやすさを重視しています。

また、サンゴの白化現象後の斃死も含め、サンゴ体表の共肉が消失した死骸の状態も「白化」と表す場合がありますが、ここではあくまでも渇虫藻の変異・排出により共肉が透き通って白色個体となった状態のみを「サンゴの白化」として扱いました。

記事中の各リンク先はTAKAさんの提供です。感謝いたします。

尚、誤りがあったら訂正しますのでお知らせくださると助かります。

こちらのエントリーもどうぞ♪

雑学2.炭素循環と光合成

この記事を含むタグの全記事リスト: 海洋雑学

(将来のコンテンツのための雑学メモ 2.)

前回までの雑学

炭素循環

炭素循環には、比較的サイクルの短い生物学的反応によるものや、何万年規模の周期を要する地核的な循環が挙げられますが、ここでは地核的循環やメタンハイドレート、温暖化問題等の話題は割愛し、短期的な生物学的循環について触れていきます。
また、サイトの性質上、マリンアクアリウム寄りの内容となるため、陸生の代謝については省略している場合があります。

短期的な炭素循環には、海洋による放出と吸収の他、生物の呼吸(放出)と光合成による固定(吸収)が挙げられます。

生物の呼吸によって放出された二酸化炭素は、まず一次生産として多くの光合成生物によって取り込まれ、次に高次消費者らによって摂取され、物質が移動していきます。それはいずれ排泄物や遺体となって、最終的には微生物によって水と二酸化炭素に分解され、炭素は循環していきます。

炭素を固定する生物の代謝反応には、主に植物や藻類、シアノバクテリア、光合成細菌による光合成と、細菌による化学合成が挙げられます。

炭素の固定

●光合成

光合成生物のうち、植物や藻類、シアノバクテリアは酸素発生型の光合成を行いますが、その他の細菌による光合成では酸素は発生しません。

全ての光合成生物はクロロフィル:葉緑体(細菌ではバクテリオクロロフィル)と呼ばれる光合成色素を持ち、この色素により光エネルギーを化学エネルギーへ変換します。
クロロフィルは構造により、a(緑)、b(黄緑)、c(青緑)、[d,e] のタイプに分けられ、多くの光合成種が主要色素のクロロフィルaを持つ他、植物はクロロフィルbを、藻類はクロロフィルcを補助色素として併せ持つ場合が多いようです。
クロロフィルaの光の波長吸収特性は、主に青と赤にもっとも大きなピークを持ちます(クロロフィル自体の色素に由来)。また、クロロフィル以外の光合成色素には、カロチノイド(黄~褐色)やフィコビリン(青、赤)があります。

例外を除き、すべての光合成ではカルビンサイクルが用いられ、1回転あたり1分子の二酸化炭素を固定します。

光合成による反応回路
明反応 光化学系 I (PS I) 12 H2O + 12 NADP+ + エネルギー → 12 NADPH + 12 H+ + 6 O2
光化学系 II (PS II) ADP + Pi + エネルギー → ATP
暗反応 二酸化炭素固定 6 CO2 + 12 NADPH + 12 H+ + ATP → C6H12O6 + 6H2O + 12NADP+ + ADP + Pi
カルビンサイクル 12 H2O + 6 CO2 + エネルギー → C6H12O6 + 6 O2 + 6 H2O

NADPH:還元型ニコチンアミドアデニンジヌクレオチドリン酸 (還元力)

ATP:アデノシン三リン酸 (エネルギー)

光合成生物による炭素固定回路
植物、藻類、
シアノバクテリア
カルビンサイクル
還元力にはNADPH2(水)を利用
(海洋では主に炭酸脱水素酵素により炭酸をCO2源とする)
光合成細菌 紅色硫黄細菌 カルビンサイクル
還元力には硫化水素等の硫黄化合物を利用
緑色硫黄細菌 還元的TCA回路(TCA回路[クエン酸回路]の逆回転)
還元力には還元型のフェレドキシンを一部利用
紅色無硫黄細菌 炭素源に有機酸(乳酸等)や有機物(イソプロパノール等)、還元力に水素を利用し、ブドウ糖を生成
緑色無硫黄細菌

紅色硫黄細菌: クロマチウム属/Chromatium (バクテリオクロロフィルa,[b])など

緑色硫黄細菌: クロロビウム属/Chlorobium (バクテリオクロロフィルa,c,[d,e])など

紅色無硫黄細菌: 嫌気性光合成従属栄養性 (暗条件下にて好気的従属栄養性)

緑色無硫黄細菌: 嫌気性光合成従属栄養性 (好気下にて好気的従属栄養性)

●化学合成

化学合成独立栄養細菌は、無機物またはメタン等を酸化して得たエネルギーを用いて、二酸化炭素を固定します。
またメタン発酵では、嫌気的環境にて二酸化炭素と水素または酢酸等を用いてメタンを生成します。

化学合成生物による炭素固定回路
亜硝酸菌 カルビンサイクル (還元力は必要としない)
2 NH3 + 3 O2 → 2 HNO2 + 2 H2O + エネルギー(炭素固定)
硝酸菌 カルビンサイクル (還元力は必要としない)
2 NO2 + O2 → 2 NO3 + エネルギー(炭素固定)
無色硫黄細菌 カルビンサイクル (還元力は必要としない)
2 H2S + O2 → 2 S + 2 H2O + エネルギー(炭素固定)
2 S + 3 O2 + 2 H2O → 2 H2SO4 + エネルギー(炭素固定)
メタン細菌 二酸化炭素を炭素源、水素を還元力に炭素固定
CO2 + 4 H2 → CH4 + 2 H2O

亜硝酸菌: ニトロソモナス属の Nitrosomonas europaea など

硝酸菌: ニトロバクター属の Nitrobacter winogradskyi など

無色硫黄細菌: チオバチルス属/Thiobacillus、ベギアットア属/Beggiatoa、チオプローカ属/Thioploca など。上記反応式は Thiobacillus thiooxidans による

メタン細菌: メタノコッカス属/Methanococcus、メタノバクテリウム属/Methanobacterium、メタノロバス属/Methanolobus など

炭素の分解

一方、炭素が大気に開放される反応は、生物の呼吸以外には、微生物による分解やメタン資化などがあります。
生物の排泄物や遺体は、様々な分解者によって細かく解体され、最終的には多くの微生物によって無機分子(水と二酸化炭素)にまで分解されます。
メタンの資化では、メタン細菌によって生成されたメタンが、メタン酸化細菌によって二酸化炭素に再酸化されます。

メタン酸化細菌: メチロモナス属/Methylomonas、メチロバクター属/Methylobacter、メチロミクロビウム属/Methylomicrobium など

参考: 環境微生物学、海洋微生物の分子生態学、
クロロフィルカルビン回路光合成色素硝化細菌

こちらのエントリーもどうぞ♪